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Morphological models

Goals:

• Random aspect of heterogeneities shape and positions
• Discrete aspect
• Size distribution of the heterogeneities…

Hard spheres packing:

Simple, natural and efficient , one “kind” of morphology, ideal shapes, heavy

 M. Bargieł and E. M. Tory, Packing fraction and measures of disorder of ultradense irregular packings of equal spheres, 2001.
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Morphological models

Excursion set of correlated Random Fields:

• Different “kinds” of morphologies, light, random shapes, evolutive
• Hard to control, distribution less natural, smooth surfaces (for now)

 R. Adler, Some new random field tools for spatial analysis, 2008.

 E. Roubin, J.-B. Colliat N. Benkemoun, Meso-scale modeling of concrete: a morphological description based on excursion sets of Random Fields, 2015.
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Probabilistic framework

Random Variables

It represents a phenomenon possessing an unpredictible output which, with repe-
tition can possess a regular nature.
The theory of probability is mathematical framework to model those processes.

To put in simply, in our case we can define a Random Variable as a function:
where the set of all the possible results of the experiment.

If is a subset of we often note the event :

is set with a probability function measuring the chance of such an event to occur:

 A. Kolmogorov, Foundations of the Theory of Probability, 1933.
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The theory of probability is mathematical framework to model those processes.

To put in simply, in our case we can define a Random Variable as a function: X : Ω 7→ E

where Ω the set of all the possible results of the experiment.

If A is a subset of E we often note the event X−1(ω) = {ω ∈ Ω, X(ω) ∈ A}: {X ∈ A}
Ω is set with a probability function P measuring the chance of such an event to occur:

P (X ∈ A) =

∫

A

fX(x)dx ∀A ⊂ E

 A. Kolmogorov, Foundations of the Theory of Probability, 1933.
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Random Variables

Probability function of a Random Variable

Here, RV take value in R. The density probability function fX : R 7→ R
+:

The probability function is:

P (X ∈ A) =

∫

A

fX(x)dx ∀A ⊂ R

and defines the distribution, i.e. the chance for this variable to get a given value.

From this distribution the first two moments are known as:

The expected value: and the variance:

Lack of spatial structure
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Correlated Random Fields

Based on the same definition, a correlated Random Field (RF) is defined by adding to the
function X a space parameter. If g is such a field, it is defined over both

• Ω, the probability space
• M ⊂ R

N , an Euclidean space
g : Ω × R

N 7→ E

Covariance functions

In order to statistically control the spatial structure of the field a covariance func-
tion is defined (for a zero mean distribution):

• If and are independent:
•

10
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N , an Euclidean space
g : Ω × R

N 7→ E

Covariance functions

In order to statistically control the spatial structure of the field a covariance func-
tion is defined (for a zero mean distribution):

C(x, y) = E(g(x)g(y))

• If g(x) and g(y) are independent: C(x, y) = E(g(x))E(g(y)) = 0

• C(x, x) = E(g(x)2) = V(g(x))
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Correlated Random Fields

Technically to define a stricly stationary correlated Random Field we have to define:

• A constant probability distribution over the spatial parameter x. g(x) can be seen as
a RV X . A classical distribution is the Gaussian distribution N (µ, σ) where µ is the
mean value and σ the standard deviation:

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

• A covariance function wich depends on the distance between two points in space
. A classical choice is the Gaussian covariance function:
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a RV X . A classical distribution is the Gaussian distribution N (µ, σ) where µ is the
mean value and σ the standard deviation:

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

• A covariance function wich depends on the distance between two points in space
d = ∥x − y∥. A classical choice is the Gaussian covariance function:

C(d) = σ2e−d2/L2

c
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Correlated Random Fields

Correlation length Lc

The Gaussian correlation function

C(d) = σ2e−d2/L2

c

has a single structural parameter Lc called the correlation length.

Large
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Correlated Random Fields

Out of topic… but other classes of covariance functions bring more flexibilty.

With the Matérn class we can play with the roughness (additional parameter ν):

C(d) =
σ2

Γ(ν)21−ν

(
√

2νd

Lc

)ν

Kν

(
√

2νd

Lc

)

ν → ∞

Gaussian
ν = 3/2 ν = 1/2

Exponential

 Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.
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Definition of an excursion set

An excursion set Es is the result of the “threshold” of a realisation of a RF:

Es = {x ∈ M | g(x) ∈ Hs}

where M is the domain of definition of the RF and Hs the so called Hitting Set.

For example if we set s we have s
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Excursion sets and scale factor

Medium Lc
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A large set of morphologies
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Family of measures

It exists several family of measures (Minkowski functionals, Lipschitz-Killing
curvatures…). In an N−dimensional space, the size of the family is N + 1 where
each element can be seen as a n−dimensional measure.
Each measure can be classified into two types:
• geometrical measures (1 ≤ n ≤ N )
• topological measure (n = 0)

Here we simplify by using known linear combinasions of those which gives:

In 2D
: Surface area
: Total curvature
: Euler Characteristic

In 3D
: Volume
: Surface area
: Total curvature
: Euler Characteristic

19
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curvatures…). In an N−dimensional space, the size of the family is N + 1 where
each element can be seen as a n−dimensional measure.
Each measure can be classified into two types:
• geometrical measures (1 ≤ n ≤ N )
• topological measure (n = 0)

Here we simplify by using known linear combinasions of those which gives:

In 2D
n = 2: Surface area
n = 1: Total curvature
n = 0: Euler Characteristic

In 3D
n = 3: Volume
n = 2: Surface area
n = 1: Total curvature
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The Euler Characteristic

The Euler Characteristic: a topological measure

The Euler Characteristic is a mathematical measure that gives information on the
topology of the morphology.
It enumerates n−dimensional features.
• In 2D

χ = #{connected components} − #{holes}

• In 3D

χ = #{connected components} − #{handles} + #{holes}

20



Mean value of the measures over the threshold

Threshold κ

Evolution of the 4 measures?
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The expectation formula

In the context of excursion sets of correlated Random Fields each measure Lj is a
Random Variable.
They have a distribution that depends on:
• the parameters of the correlated Random Field (C(x, y), fX(x), M )
• the hitting set (κ)

We don’t know the distribution but we know its expected value:

 R. Adler, Some new random field tools for spatial analysis, 2008.
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ωiωj
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2π

)i/2

Li+j(M) Mγ
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Mean value of the measures over the threshold
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The Excursion Set Theory and
percolation



Outline

Morphological model based on correlated Random Fields

Motivations

Correlated Random Fields

Excursions of correlated Random Fields

Standard mathematical measures of manifolds

N + 1 measures for N−dimensional spaces
Expectation of the measures for excursion: The Excursion Set Theory

The Excursion Set Theory and percolation

Our positioning

The Euler Characteristic: percolation criterion

Results



The pioners

 Paul J. Flory, Molecular size distribution in three dimensional polymers: Gelation, 1941.

 S. R. Broadbent and J. M. Hammersley, Percolation process I and II, 1957.
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The Critical Percolation Probabilities pc

 R. Zallen, The Physics of Amorphous Solids: Chapter 4 The
Percolation Model, 1983.

 M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in Two
Dimensions, 1964.

• Only on lattices (graphs)
• Depends much on the lattice type
• No analytical results in 3D
• Volumetric approach to regularise
 R. Zallen, Critical density in percolation processes, 1970.

28



The Critical Percolation Probabilities pc

 R. Zallen, The Physics of Amorphous Solids: Chapter 4 The
Percolation Model, 1983.

 M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in Two
Dimensions, 1964.

• Only on lattices (graphs)
• Depends much on the lattice type
• No analytical results in 3D
• Volumetric approach to regularise
 R. Zallen, Critical density in percolation processes, 1970.

28



The Critical Percolation Probabilities pc

 R. Zallen, The Physics of Amorphous Solids: Chapter 4 The
Percolation Model, 1983.

 M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in Two
Dimensions, 1964.

• Only on lattices (graphs)
• Depends much on the lattice type
• No analytical results in 3D
• Volumetric approach to regularise
 R. Zallen, Critical density in percolation processes, 1970.

28



Links between percolation theory and topology

Percolation and topological quantification

They are two different concepts.
Percolation: find the existence of clusters of the size of the system
Topology: measure the connectivity

However it has been observed many times that critical behaviour takes place when
the Euler Characteristic changes sign.

• Often with analytical solutions
• Often limited to boolean problems in infinite spaces

 B. L. Okun, Euler Charachteristic in Percolation Theory, 1989.

 K. R. Mecke and H. Wagner, Euler characteristic and related measures for random geometric sets, 1991.

 H. Tomita and C. Murakami, Percolation pattern in continuous media and its topology, 1994.
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The Euler Characteristic
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The Euler Characteristic: scale ratio
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Phase diagram
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Percolation of the solid phase in N dimensions
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Topology of excursion sets [Roubin and Colliat, 2016]
Continuum / overlapping spheres [Torquato and Jiao, 2012]
Bond problem / hypercubes [Grassberger, 2003]
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RVE for percolation

Statistical procedure to define RVE

We are interested in a certain property of the media: the critical volume of per-
colation Φc.

For finite domain, we compute the mean value and the variance of c
over several realisations of the media (Monte Carlo). From these we can define a
RVE for a given error (linked with the variance).

RVE with the Excursion set theory

We have access to the infinite domain volume of percolation c that we take as
the reference (not possible to compute in the previous case).

We can define analyticaly the error as: c c

c

By inverting the error we have and thus, the RVE for a given error.
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the reference (not possible to compute in the previous case).

We can define analyticaly the error as: ϵ(β) =
Φc(β) − Φ∞

c
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By inverting the error we have β(ϵ) and thus, the RVE for a given error.
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RVE for percolation

Results

• For an error of 1% we have a scale ratio of 400.
• For an error of 5% we have a scale ratio of 83.

As far as we can tell no RVE for percolation can be found in litterature.

Comparison to RVE for water diffusivity in cement paste

It is linked with percolation. In [Zhang, Ye and Breugel, 2011] they found for
a error a scale ratio of .
• Not the same property of interest (mechanical vs topological)
• Polydisperse spheres

 M. Zhang, Ye G. and K. van Breugel, Microstructure-based modeling of water diffusivity in cement paste, 2011.
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Results

• For an error of 1% we have a scale ratio of 400.
• For an error of 5% we have a scale ratio of 83.

As far as we can tell no RVE for percolation can be found in litterature.

Comparison to RVE for water diffusivity in cement paste

It is linked with percolation. In [Zhang, Ye and Breugel, 2011] they found for
a 1% error a scale ratio of 100.
• Not the same property of interest (mechanical vs topological)
• Polydisperse spheres

 M. Zhang, Ye G. and K. van Breugel, Microstructure-based modeling of water diffusivity in cement paste, 2011.
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Perspectives and possible
applications



Further investigations

• Role of the distribution on the model (non isotropic fields)
• Investigation on the χ = 0 ⇔ percolation with numerical simulations

Applications

• Prediction of percolation in evolutive heterogeneous media
• Estimation of local parameters in phenomenological laws (diffusion, …)
• Analytical model for size effect for heterogeneous brittle materials (lack of
mechanics)
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