Contenu | Navigation |

Suivez-nous S'abonner à Syndiquer

Vous êtes iciSéMINAIRE

Séminaire

Séminaire

Zhang Aoxi

le 8 décembre 2023

10h30

Investigation into the mechanical behaviour of bio-cemented sands using the discrete element method
Bio-cementation soil improvement methods are alternatives to invasive, carbon-intensive stabilisation techniques. These methods, which include microbially induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP), use biogeochemical processes to drive carbonate precipitation and cement soil grains, thereby improving the material mechanical performance. Sands treated by bio-cementation methods typically exhibit an improvement in strength and stiffness, yet often with variable magnitudes, even at equal calcium carbonate contents. The variation in the mechanical performance of bio-cemented sands impedes the practical applications of MICP/ EICP, while it is poorly understood. In this presentation, we are going to understand the mechanical behaviour of bio-cemented sands, particularly the uncertainty or variation of the mechanical performance, from the microscopic point of view by using the discrete element method (DEM).

Localisation

Galilée 010
Mis à jour le 22 novembre 2023
A multiscale simulation workflow to predict macroscopic continuum-scale properties from chemically-specific atomic-scale models.
A multiscale simulation workflow to predict macroscopic continuum-scale properties from chemically-specific atomic-scale models.
Séminaire

Maxime Vassaux

le 19 janvier 2024
10h30
Probing mechanical properties of (bio)polymers with chemical specificity using molecular and multiscale simulation

Molecular dynamics simulations are ubiquitous in materials science, from drug discovery to design of advanced structural nanocomposites. Owing to the high-resolution of these simulations taking place at the atomic scale, predictions give access to data often complementary to experiments; be it characterisation of the nanostructure or even sophisticated instrumentation. I will begin the talk introducing the fundamentals of setting up molecular models and dynamics simulations to investigate the mechanics of materials. I will illustrate these aspects focusing on the collagen, the structural protein of choice in the human body and more largely the animal kingdom. I will present our recent investigations on the influence of hydration on the assembly of collagen microfibrils and the complex water dynamics within, trying to draw conclusions on the mechanical properties of the biopolymer.

While being quite popular, molecular dynamics simulations have several limitations (force field precision, ergodicity). Among these, the spectrum of spatiotemporal scales integrated within a simulation is extremely limited. This is particularly problematic when mechanical properties are of interest, as these emerge from the combination of scales ranging from the nanoscale (chemistry) to the macroscale (processing, testing). Unlike real-life experiments, all scales cannot be resolved simultaneously using computer simulations. I will give an overview of the existing multiscale simulation strategies: from rather cheap hierarchical to expensive concurrent approaches. I will illustrate their applicability with examples from my past research on the fracture of concrete under seismic loading and the dynamic behaviour of impacted shells of epoxy-graphene nanocomposites.

Localisation

Galilée room 011
Mis à jour le 14 septembre 2023
Construction of a digital twin based on Thermodynamics-based Artificial Neural Networks
Construction of a digital twin based on Thermodynamics-based Artificial Neural Networks
Séminaire

Filippo Masi

le 5 octobre 2023
at 10h00
Discovery of neural constitutive equations of complex materials
Accurate models for the behaviour of materials are of fundamental importance in material science and mechanics. Traditionally, these models are derived from first principles (thermodynamics) and fine-tuned using heuristic/empirical methods to ensure calibration over experiments. However, heuristic constitutive modelling can fall short in describing the behaviour of complex materials that display path-dependent behaviours and possess multiple inherent scales, e.g. metamaterials, geomaterials, and biomaterials.
In recent years, the advent of Machine Learning, fuelled by a continuously increasing flow of data, has provided promising solutions to address the limitations of traditional constitutive modelling. Here, we present the Thermodynamics-based Artificial Neural Networks (Masi et al. 2021; Masi and Stefanou, 2022), which embed the fundamental laws of thermodynamics directly into their structure, thus ensure thermodynamically consistent predictions.

This talk mainly focuses on two major issues: (1) the non trivial identification of representative material state variables (Masi and Stefanou, 2023)—an essential ingredient in non-equilibrium thermodynamics—and (2) the shortcoming of ML in dealing with small data, i.e. limited and sparse material data sets (Masi and Einav, 2023). The capabilities of the methodology are demonstrated for the constitutive modelling of several complex, multiscale materials, displaying inelastic behaviour, path- and rate-dependency.
 
  • F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier (2021). Thermodynamics-based Artificial Neural Networks for constitutive modeling. J Mech Phys Solids 147, 104277. doi: 10.1016/j.jmps.2020.104277.
  • F. Masi, I. Stefanou (2022a). Multiscale modeling of inelastic materials with Thermodynamics-based Artificial Neural Networks (TANN), Comput Methods Appl Mech Eng 398, 115190. doi: 10.1016/j.cma.2022.115190.
  • F. Masi, I. Stefanou (2023). Evolution TANN and the identification of internal variables and evolution
  • equations in solid mechanics, J Mech Phys Solids 174, 105245. doi: 10.1016/j.jmps.2023.105245.
  • F. Masi, I. Einav (2023). Neural differential constitutive equations for small data. Under preparation.

Localisation

Galilée room 010
Mis à jour le 13 septembre 2023
Séminaire

Zhang Pin

le 4 mai 2023
14h00
Data-Driven Modelling for Discovery and Solution of Partial Differential Equations

Identifying governing equations from data and solving them to acquire spatio-temporal responses is desirable, yet highly challenging, for many practical problems. Machine learning (ML) has emerged as an alternative to influence knowledge discovery in complex geotechnical processes. To demonstrate feasibility, this study develops an ML-assisted data-driven approach to automatically recover Terzaghi’s consolidation theory from measured data and obtain the corresponding solutions. This process incorporates several algorithms including sparse regression and prior information based neural network (PiNet), transformed weak-form partial differential equations (PDEs) (to reduce sensitivity to noisy measurement), and Monte Carlo dropout to achieve a measure of prediction uncertainty. The results indicate that consolidation PDEs can be accurately extracted using the proposed approach which is also shown to be robust to noisy measurements. PDEs solved by PiNet are also shown to provide excellent agreement with actual results thus highlighting its potential for inverse analysis. The proposed approach is generic and provides an auxiliary method to verify heuristic interpretations of data or to directly identify patterns and obtain solutions without the need for expert intervention.

Localisation

Galilée room 011
Mis à jour le 21 avril 2023
Séminaire

Jean Lerbet

le 27 avril 2023
14h00
Sur l’écriture intrinsèque des lois de comportements des milieux discrets
L’objectif de cet exposé est de présenter quelques résultats sur la formalisation géométrique des milieux discrets. On s’attachera  à décrire la nature géométrique (ou intrinsèque) des objets intervenant dans l’écriture des lois de comportements des milieux discrets ainsi que de l’évolution incrémentale de tels milieux. Nous présenterons tout d’abord un aperçu historique des questions sous jacentes, aperçu qui  permettra de comprendre des motivations de ces développements. Ensuite selon le temps disponible nous avancerons dans la description géométrique des différents objets impliqués dans les lois et évolutions incrémentales: forces, déformations, taux de déformations, stabilité, élasticité, hyperélasticité, hypoélasticité, etc. 

Localisation

Salle 011
Mis à jour le 6 mars 2023
Séminaire

Alexander Erlich

le 23 février 2023
14h00
Mechanical feedback in the growth of living tissues

The mechanism with which cells measure the dimension of the organ in which they are embedded, and slow down their growth when the final size is reached, is a long-standing problem in developmental biology. Feedback loops between growth and mechanical stress are increasingly believed to be important. In this presentation, I will introduce the concept of morphoelasticity as a standard continuum framework for modelling growing elastic tissues and provide insight into the feedback loops between growth and stress by considering simple 1D and 2D examples, such as a spring growing against a passive medium. However, without additional variables, the classical morphoelasticity theory often leads to either a collapse or unbounded growth of the tissue and prohibits reaching a finite asymptotic size. To address this issue, I will show how to modify the classical setting by including an energetic cost associated with growth, leading to the physical effect of size control.

These ideas will be applied to a specific system of a multicellular spheroid growing against the pressure of a medium in which it is embedded. The present model provides a qualitatively correct residual stress profile and has a naturally emerging necrotic core, both of which have been established experimentally in multicellular spheroids, and could be a step towards a better understanding of the role of mechanics in growing biological tissues.


 

Localisation

Galilée room 011
Mis à jour le 15 février 2023
Pierre-Simon Jouk / René Chambon / Claudio Tamagnini / Annie Raoult
Pierre-Simon Jouk / René Chambon / Claudio Tamagnini / Annie Raoult
Séminaire

Denis Caillerie

le 27 janvier 2023
08h30 - 12h30
Demi-journée en l'honneur de Denis Caillerie
  • 08:30 Pierre-Simon Jouk (TIMC, Grenoble, France): La myoarchitecture cardiaque est un analogue biologique (...)
  • 09:15 René Chambon (3SR, Grenoble, France): Unicité, Bifurcation, Contrôlabilité, Monotonicité, Inversibilité, (...)
  • 10:00 COFFEE BREAK
  • 10:30 Claudio Tamagnini (Università di Perugia, Italie): Second Gradient Poromechanics : Constitutive Modeling and Numerical (...)
  • 11:15 Annie Raoult (Laboratoire MAP5, Paris, France): Quelques remarques en thermomécanique
  • 12:00 présentation et clôture par Denis Caillerie : Préoccupations, occupations, postoccupations mathématiques

Localisation

Amphithéâtre du Laboratoire LEGI
1209 rue de la Piscine
Campus Universitaire de Saint Martin d'Hères
Mis à jour le 13 janvier 2023
Robert Charlier / Stéphane Andrieux / Pierre Suquet / Michel Bornert
Robert Charlier / Stéphane Andrieux / Pierre Suquet / Michel Bornert
Séminaire

Jacques Desrues

le 26 janvier 2023
14h00 - 18h00
Demi-journée en l'honneur de Jacques Desrues
  • 14:00 Robert Charlier (Université de Liège, Belgique) : Ouvrages souterrains de stockage de déchets nucléaires (...)
  • 14:45 Stéphane Andrieux (ONERA, France) : Des outils basés sur la divergence de Bregman pour le traitement (...)
  • 15:30 COFFEE BREAK
  • 16:00 Pierre Suquet (CNRS, LMA, Marseille, France) : L’hétérogénéité dans tous ses états (ou presque !)
  • 16:45 Michel Bornert (Laboratoire Navier, Paris, France) : Discontinuités dans les géomatériaux : vues panoramiques et plans serrés
  • 17:30 présentation et clôture par Jacques Desrues : A la poursuite de la localisation dans les géomatériaux

Localisation

Amphithéâtre du Laboratoire LEGI
1209 rue de la Piscine
Campus Universitaire de Saint Martin d'Hères
Mis à jour le 13 janvier 2023
The cytoskeleton: mechanical scaffold of the cell
The cytoskeleton: mechanical scaffold of the cell
Séminaire

Recho Pierre

le 8 décembre 2022
14h
Spontaneous motion of crawling cells
Mis à jour le 15 décembre 2022
Séminaire

Yosuke Higo

le 3 novembre 2022
14h00
Morphological transitions of pore water during triaxial compression in unsaturated soil
A set of triaxial compression tests on partially saturated dense sands to clarify the microscopic characteristics and their link to the macroscopic responses is presented. Constant suction tests (CS tests) and constant water content tests (CW tests) are conducted under low confining pressure to observe microscopic and macroscopic behaviors of the sands associated with dilative shear bands. X-ray micro-tomography and image analysis techniques are applied to investigate the continuity as a defined index to evaluate the morphology of the pore water, the number of liquid bridges and the principal curvature of the air–water interface, etc.

The relationship between the microscopic observation and overall specimen-scale behaviour is also discussed. The tendency of decreasing curvature corresponds to that of decreasing suction in the CW test. The peak deviator stress is higher in the CS test than in the CW test when the pore water is initially discontinuous, whereas it is identical between the two tests when the pore water is initially continuous. The residual stress is lower in the CW test than in the CS test, independent of the initial water retention states. The macroscopic responses at the different initial water retention states are qualitatively identical between poorly graded sand and well-graded sand

Localisation

Galilée room 011
Mis à jour le 21 octobre 2022

Pages